PROJECT LEARNING TREE’S
PreK-8 Activity Guide
AND
Energy & Society Kit
To NH Frameworks For
Science Literacy (K-12)

New Hampshire Project Learning Tree

March 1998
Revised September 2006
This handbook is a project of New Hampshire Project Learning Tree, a private non-profit organization committed to the environmental education of our youth. The handbook is dedicated to the hundreds of school teachers and administrators who are responding to the state’s move to standards-based education. Yours is not an easy job; we hope this handbook helps to lighten the load.

We would like to hear from our readers about how you have used the handbook and whether you find it accurate and clear. You can reach NH Project Learning Tree at

54 Portsmouth St., Concord, NH 03301
Phone: 603-226-0160 or 800-677-1499.
Fax: 603-228-0423.
Email: info@nhplt.org.
Website: http://www.nhplt.org

Special thanks to the many teachers and education specialists who reviewed drafts of this document, both in 1998 and in 2006. Your keen insights strengthened the final product immensely.

This correlation was funded by the United States Environmental Protection Agency, Office of Environmental Education under agreement number NT-83272501-0 between the U.S. EPA and the University of Wisconsin–Stevens Point.

The contents of this document do not necessarily reflect the views and policies of the United States Environmental Protection Agency or The Board of Regents of the University of Wisconsin System, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Educators may photocopy these materials for the non-commercial purpose of educational advancement.

March 1998.
September 2006.
TABLE OF CONTENTS

Methodology – 2006 Correlation Revision (Science) ...i

How to Use This Handbook..ii

Part 1: Correlation of PLT Activities with NH Frameworks for Science Literacy
 PreK-8 Guide .. I-1
 Energy & Society .. I-38

Part 2: Correlation of NH Frameworks for Science Literacy with Activities
 PreK-8 Guide
 Earth Space Science .. II-2
 Life Science ... II-4
 Physical Science ... II-7
 Science Process Skills .. II-9

 Energy & Society
 Earth Space Science .. II-14
 Life Science ... II-16
 Physical Science ... II-17
 Science Process Skills .. II-18

Part 3: Chart of Correlations to NH Frameworks for Science Literacy (K-12)
 Earth Space Science .. III-2
 Life Science .. III-6
 Physical Science .. III-10
 Science Process Skills .. III-14

 NH Frameworks for Science Literacy (K-12) – Domains and Strands III-18
METHODOLOGY
2006 Correlation Revision (Science)

NH’s curriculum standards have undergone substantial change in response to the federal No Child Left Behind Act. The former state standards were written for the end of grades three, six and ten. To meet new formalized assessment requirements, the NH Frameworks for Science Literacy (K-12), approved in June 2006, address content and skills, and are divided into grade spans for K-2, 3-4, 5-6, 7-8, 9-11 (basic literacy) and 11-12 (advanced literacy).

The NH Frameworks for Science Literacy (K-12) contain the following components:
- **Domain**: There are four domains within the science curriculum frameworks: Earth Space Science (ESS), Life Science (LS), Physical Science (PS), and Science Process Skills (SPS).
- **Strand**: There are five strands, or enduring knowledge statements, in LS and four each in domains of PS and ESS. Strands are the SAME for each grade span although not all components may be seen in each grade span. (Example: LS1 – All living organisms have identifiable structures and characteristics that allow for survival (organisms, populations, & species.))
- **Stem**: These are the categories of ideas. Stems are common throughout all grade spans. (Example: 1. Classification)
- **Grade-span Expectations (Proficiencies)**: These are what all students should know and be able to do within a specific grade range. The ranges include: K-2, 3-4, 5-6, 7-8, 9-11 (basic literacy level) 11-12 (advanced level).

For each strand, the associated proficiencies were consulted to help inform the degree of correlation of the broader strand with each activity; a match of at least one proficiency was required to indicate a correlation. Three elements of each activity will help focus the correlation process.
- The subject identifier in the sidebar determined whether the activity was correlated to the science frameworks; if science is not listed the activity was not be addressed.
- The grade levels noted in the sidebar determined which grade span proficiencies were examined.
- The description of activity objectives in the sidebar informed which curriculum and proficiency standard(s) are related to the activity.

Note: Any attempt to correlate universal curriculum standards and a single curriculum program involves subjectivity. Two important steps were taken to limit bias. First, the author applied this rigorous methodology to determine correlation. Second, drafts were peer-reviewed by PLT-trained elementary, middle, and high school teachers. Reviewers most common finding was that PLT activities lend themselves to modification, and in so doing, would meet many more standards than indicated. NHPLT chose, however, to correlate based on a strict interpretation of the activities, as they are written.
HOW TO USE THIS HANDBOOK

The purpose of this handbook is to assist educators who are reviewing and revising their science curricula. The primary audience is classroom teachers, curriculum specialists, and curriculum committees.

The handbook is divided into three sections, as follows:

- **PART I** lists each PLT activity in the *PreK-8 Activity Guide* and *Energy & Society Kit* followed by the standards from the NH Frameworks for Science Literacy (K-12) with which it is aligned.

 Use Part I if you have a particular PLT activity in mind and want to know how it correlates with the state curriculum standards. Or, to find an appropriate activity to meet your needs, use PLT’s “Topic Index” to select several potential activities to supplement your unit. To determine which state standards correlate with these activities, find the number and name of each activity in this handbook. Select an activity based on your objectives for your unit and the degree to which the activity correlates with appropriate standards. Each PLT activity is indicated by activity number and name and is followed by the strand and stem for each framework that is correlated to that activity.

- **PART II** lists individual state curriculum standards from the NH Frameworks for Science Literacy (K-12), followed by the PLT activities that meet the individual standards.

 Use Part II if you have a particular curriculum standard in mind and want to find an activity that meets this standard. Then read about the activities in your PLT guide to determine the one most suitable for your particular situation.

 All science domains (i.e. Life Science), strands (i.e. All living organisms have identifiable structures and characteristics that allow for survival (organisms, populations, & species) and stems (i.e. 1- Classification) are listed. Following each standard, the PLT activities aligned with that standard are identified by number and name.

- **Part III** is a chart that lists each PLT activity in the *PreK-8 Activity Guide* and *Energy & Society Kit* and the standards from the NH Frameworks for Science Literacy (K-12) with which each activity is aligned.

Note: Throughout this handbook, the domains are abbreviated as follows:

- ESS – Earth Space Science
- LS – Life Science
- PS – Physical Science
- SPS – Science Process Skills
NH Frameworks for Science Literacy (K-12)
Earth Space Science

ESS1 - The Earth and Earth materials, as we know them today, have developed over long periods of time, through constant change processes.

1. Atmosphere, Climate, & Weather
 44: Water Wonders
 84: The Global Climate

2. Composition & Features
 70: Soil Stories
 92: A Look at Lifestyles

3. Fossils
 None

4. Observation of the Earth from Space
 None

5. Processes & Rates of Change
 None

6. Rock Cycle
 70: Soil Stories

7. Water
 44: Water Wonders

ESS2 - The Earth is part of a solar system, made up of distinct parts, which have temporal and spatial interrelationships.

1. Earth, Sun and Moon
 None

2. Energy
 None

3. Solar System
 None

4. View from Earth
 None
ESS3 - The origin and evolution of galaxies and the universe demonstrate fundamental principles of physical science across vast distances and time.

1. Size and Scale
 None

2. Stars and Galaxies
 None

3. Universe
 None

ESS4 - The growth of scientific knowledge in Earth Space Science has been advanced through the development of technology and is used (alone or in combination with other sciences) to identify, understand and solve local and global issues.

1. Design Technology
 None

2. Tools
 48: Field, Forest, and Stream

3. Social Issues (Local and Global)
 35: Loving It Too Much
 36: Pollution Search
 37: Reduce, Reuse, Recycle
 38: Every Drop Counts
 40: Then and Now
 52: A Look At Aluminum
 71: Watch on Wetlands
 81: Living with Fire
 82: Resource-Go-Round
 85: In the Driver's Seat
 86: Our Changing World
 87: Earth Manners
 89: Trees for Many Reasons
 92: A Look at Lifestyles

4. Career Technical Education Connections
 34: Who Works In This Forest?
 83: A Peek at Packaging
Life Science

LS1 - All living organisms have identifiable structures and characteristics that allow for survival (organisms, populations, & species).

1. Classification
 4: Sounds Around
 7: Habitat Pen Pals
 9: Planet Diversity
 10: Charting Diversity
 11: Can It Be Real?
 12: Invasive Species

2. Living Things and Organization
 4: Sounds Around
 6: Picture This!
 7: Habitat Pen Pals
 8: The Forest of S.T. Shrew
 10: Charting Diversity
 12: Invasive Species
 23: Fallen Log (The)
 25: Birds and Worms
 27: Every Tree for Itself
 41: How Plants Grow

3. Reproduction
 79: Tree Lifecycle

LS2 - Energy flows and matter recycles through an ecosystem.

1. Environment
 2: Get In Touch With Trees
 3: Peppermint Beetle
 6: Picture This!
 8: The Forest of S.T. Shrew
 12: Invasive Species
 20: Environmental Exchange Box
 22: Trees as Habitats
 23: The Fallen Log
 24: Nature's Recyclers
 26: Dynamic Duos
 27: Every Tree for Itself
 29: Rain Reasons
 32: A Forest of Many Uses
 33: Forest Consequences
 41: How Plants Grow
 42: Sunlight and Shades of Green
 46: School Yard Safari
 47: Are Vacant Lots Vacant?
 48: Field, Forest, and Stream
 61: The Closer You Look
 62: To Be A Tree
 63: Tree Factory
 65: Bursting Buds
 66: Germinating Giants
 76: Tree Cookies
 77: Trees in Trouble
 78: Signs of Fall
 80: Nothing Succeeds Like Succession
 84: The Global Climate
2. Flow of Energy
 23: The Fallen Log
 24: Nature's Recyclers
 27: Every Tree for Itself
 28: Air Plants
 42: Sunlight and Shades of Green
 45: Web of Life
 46: School Yard Safari

3. Recycling of Materials
 8: The Forest of S.T. Shrew
 21: Adopt a Tree
 22: Trees as Habitats
 23: The Fallen Log
 24: Nature's Recyclers
 26: Dynamic Duos
 45: Web of Life
 47: Are Vacant Lots Vacant?
 48: Field, Forest, and Stream

LS3 - Groups of organisms show evidence of change over time (e.g. evolution, natural selection, structures, behaviors, and biochemistry).

1. Change
 12: Invasive Species
 17: People of the Forest
 18: Tale of the Sun
 23: The Fallen Log
 32: A Forest of Many Uses
 33: Forest Consequences
 34: Who Works In This Forest?
 35: Loving It Too Much
 36: Pollution Search
 40: Then and Now
 41: How Plants Grow
 42: Sunlight and Shades of Green
 48: Field, Forest, and Stream
 50: 400-Acre Wood
 69: Forest for the Trees
 72: Air We Breathe
 76: Tree Cookies
 77: Trees in Trouble
 80: Nothing Succeeds Like Succession
 81: Living with Fire
 84: The Global Climate
 86: Our Changing World
 89: Trees for Many Reasons
 94: By the Rivers of Babylon

2. Evolution
 11: Can It Be Real?

3. Natural Selection
 12: Invasive Species
 20: Environmental Exchange Box
 23: Fallen Log (The)
 29: Rain Reasons
 48: Field, Forest, and Stream
LS4 - Humans are similar to other species in many ways, and yet are unique among Earth’s life forms.

1. Behavior
 4: Sounds Around
 18: Tale of the Sun
 19: Viewpoints on the Line
 78: Signs of Fall
 91: In the Good Old Days

2. Disease
 None

3. Human Identity
 16: Pass the Plants, Please

LS5 - The growth of scientific knowledge in Life Science has been advanced through the development of technology and is used (alone or in combination with other sciences) to identify, understand and solve local and global issues.

1. Design Technology
 13: We All Need Trees
 15: A Few of My Favorite Things
 17: People of the Forest
 18: Tale of the Sun
 51: Make Your Own Paper
 67: How Big Is Your Tree?
 72: Air We Breathe
 92: A Look at Lifestyles

2. Tools
 4: Sounds Around
 48: Field, Forest, and Stream
 66: Germinating Giants
 67: How Big Is Your Tree?

3. Social Issues (Local and Global)
 72: Air We Breathe

4. Career Technical Education Connections
 31: Plant a Tree
 32: A Forest of Many Uses
 34: Who Works In This Forest?
 67: How Big Is Your Tree?
 69: Forest for the Trees
Physical Science

PS1 - All living and nonliving things are composed of matter having characteristic properties that distinguish one substance from another (independent of size/amount of substance).

1. Composition
 15: A Few of My Favorite Things

2. Properties
 None

PS 2 - Energy is necessary for change to occur in matter. Energy can be stored, transferred and transformed, but cannot be destroyed.

1. Change
 None

2. Conservation
 None

3. Energy
 39: Energy Sleuths

PS 3 - The motion of an object is affected by force.

1. Forces
 None

2. Motion
 None

PS4 - The growth of scientific knowledge in Physical Science has been advanced through the development of technology and is used (alone or in combination with other sciences) to identify, understand and solve local and global issues.

1. Design Technology
 15: A Few of My Favorite Things
 51: Make Your Own Paper

2. Tools
 51: Make Your Own Paper
PS4 - The growth of scientific knowledge in Physical Science has been advanced through the development of technology and is used (alone or in combination with other sciences) to identify, understand and solve local and global issues. (cont.)

3. Social Issues (Local and Global)
 14: Renewable or Not? 52: A Look At Aluminum
 39: Energy Sleuths 82: Resource-Go-Round
 51: Make Your Own Paper

4. Career Technical Education Connections
 None
Science Process Skills

SPS1: Scientific Inquiry and Critical Thinking Skills

1. Making Observations and Asking Questions
 1: The Shape of Things 43: Have Seeds, Will Travel
 2: Get In Touch With Trees 46: School Yard Safari
 3: Peppermint Beetle 47: Are Vacant Lots Vacant?
 4: Sounds Around 48: Field, Forest, and Stream
 5: Poet-Tree 54: I'd Like to Visit a Place Where...
 6: Picture This! 61: The Closer You Look
 7: Habitat Pen Pals 64: Looking at Leaves
 8: The Forest of S.T. Shrew 65: Bursting Buds
 9: Planet Diversity 66: Germinating Giants
 10: Charting Diversity 67: How Big Is Your Tree?
 11: Can It Be Real? 68: Name That Tree
 13: We All Need Trees 70: Soil Stories
 15: A Few of My Favorite Things 71: Watch on Wetlands
 20: Environmental Exchange Box 72: Air We Breathe
 21: Adopt a Tree 73: Waste Watchers
 22: Trees as Habitats 76: Tree Cookies
 23: The Fallen Log 77: Trees in Trouble
 24: Nature's Recyclers 78: Signs of Fall
 25: Birds and Worms 80: Nothing Succeeds Like Succession
 36: Pollution Search 81: Living with Fire
 37: Reduce, Reuse, Recycle 82: Resource-Go-Round
 38: Every Drop Counts 83: A Peek at Packaging
 39: Energy Sleuths 84: The Global Climate
 40: Then and Now 96: Improve Your Place
 41: How Plants Grow 42: Sunlight and Shades of Green

2. Designing Scientific Investigations
 41: How Plants Grow

3. Conducting Scientific Investigations
 4: Sounds Around 67: How Big Is Your Tree?
 9: Planet Diversity 70: Soil Stories
 24: Nature's Recyclers 71: Watch on Wetlands
 41: How Plants Grow 72: Air We Breathe
 42: Sunlight and Shades of Green 73: Waste Watchers
 47: Are Vacant Lots Vacant? 77: Trees in Trouble
 48: Field, Forest, and Stream 85: In the Driver's Seat
 51: Make Your Own Paper 96: Improve Your Place
 66: Germinating Giants 69: How Big Is Your Tree?
SPS1: Scientific Inquiry and Critical Thinking Skills (cont.)

4. Representing and Understanding Results of Investigations
 9: Planet Diversity
 24: Nature's Recyclers
 25: Birds and Worms
 37: Reduce, Reuse, Recycle
 41: How Plants Grow
 47: Are Vacant Lots Vacant?
 24: Nature's Recyclers
 25: Birds and Worms
 37: Reduce, Reuse, Recycle
 41: How Plants Grow
 47: Are Vacant Lots Vacant?
 48: Field, Forest, and Stream
 67: How Big Is Your Tree?
 70: Soil Stories
 71: Watch on Wetlands
 73: Waste Watchers
 77: Trees in Trouble

5. Evaluating Scientific Explanations
 9: Planet Diversity
 42: Sunlight and Shades of Green
 48: Field, Forest, and Stream
 71: Watch on Wetlands

SPS2: Unifying Concepts of Science.

1. Nature of Science
 37: Reduce, Reuse, Recycle
 81: Living with Fire
 91: In the Good Old Days

2. Systems and Energy
 33: Forest Consequences
 37: Reduce, Reuse, Recycle
 45: Web of Life

3. Models and Scale
 44: Water Wonders
 62: To Be A Tree
 63: Tree Factory

4. Patterns of Change
 23: The Fallen Log
 40: Then and Now
 65: Bursting Buds
 80: Nothing Succeeds Like Succession
 84: The Global Climate

5. Form and Function
 65: Bursting Buds
 66: Germinating Giants
 86: Our Changing World
SPS3: Personal, Social, and Technological Perspectives

1. Collaboration in Scientific Endeavors
 2: Get In Touch With Trees
 3: Peppermint Beetle
 4: Sounds Around
 9: Planet Diversity
 13: We All Need Trees
 17: People of the Forest
 20: Environmental Exchange Box
 24: Nature's Recyclers
 31: Plant a Tree
 33: Forest Consequences
 35: Loving It Too Much
 41: How Plants Grow
 47: Are Vacant Lots Vacant?
 48: Field, Forest, and Stream
 50: 400-Acre Wood
 53: On the Move
 54: I'd Like to Visit a Place Where…
 60: Publicize It!
 63: Tree Factory
 67: How Big Is Your Tree?
 68: Name That Tree
 70: Soil Stories
 71: Watch on Wetlands
 74: Trees in Trouble
 83: A Peek at Packaging
 84: The Global Climate
 86: Our Changing World
 91: In the Good Old Days
 72: Air We Breathe
 73: Waste Watchers
 77: Trees in Trouble
 80: Nothing Succeeds Like Succession
 81: Living with Fire
 83: A Peek at Packaging
 84: The Global Climate
 85: In the Driver's Seat
 86: Our Changing World
 87: Earth Manners
 88: Life on the Edge
 89: Trees for Many Reasons
 90: Native Ways
 91: In the Good Old Days
 92: A Look at Lifestyles
 94: By the Rivers of Babylon
 96: Improve Your Place

2. Common Environmental Issues, Natural Resources Management and Conservation
 4: Sounds Around
 9: Planet Diversity
 10: Charting Diversity
 11: Can It Be Real?
 12: Invasive Species
 14: Renewable or Not?
 18: Tale of the Sun
 21: Adopt a Tree
 22: Trees as Habitats
 23: The Fallen Log
 31: Plant a Tree
 33: Forest Consequences
 35: Loving It Too Much
 36: Pollution Search
 37: Reduce, Reuse, Recycle
 38: Every Drop Counts
 39: Energy Sleuths
 40: Then and Now
 46: School Yard Safari
 50: 400-Acre Wood
 54: I'd Like to Visit a Place Where…
 60: Publicize It!
 71: Watch on Wetlands
 72: Air We Breathe
 73: Waste Watchers
 77: Trees in Trouble
 78: Signs of Fall
 79: Tree Lifecycle
 80: Nothing Succeeds Like Succession
 81: Living with Fire
 83: A Peek at Packaging
 84: The Global Climate
 85: In the Driver's Seat
 86: Our Changing World
 87: Earth Manners
 88: Life on the Edge
 89: Trees for Many Reasons
 90: Native Ways
 91: In the Good Old Days
 92: A Look at Lifestyles
 94: By the Rivers of Babylon
 96: Improve Your Place

3. Science and Technology; Technological Design and Application
 4: Sounds Around
 18: Tale of the Sun
 33: Forest Consequences
SPS4: Science Skills for Information, Communication and Media Literacy

1. Information and Media Literacy
 12: Invasive Species
 17: People of the Forest
 37: Reduce, Reuse, Recycle
 39: Energy Sleuths
 45: Web of Life
 49: Tropical Treehouse
 82: Resource-Go-Round
 84: The Global Climate
 88: Life on the Edge
 91: In the Good Old Days
 92: A Look at Lifestyles
 94: By the Rivers of Babylon

2. Communication Skills
 1: The Shape of Things
 2: Get In Touch With Trees
 5: Poet-Tree
 6: Picture This!
 7: Habitat Pen Pals
 9: Planet Diversity
 10: Charting Diversity
 11: Can It Be Real?
 12: Invasive Species
 15: A Few of My Favorite Things
 21: Adopt a Tree
 22: Trees as Habitats
 24: Nature's Recyclers
 36: Pollution Search
 38: Every Drop Counts
 39: Energy Sleuths
 44: Water Wonders
 46: School Yard Safari
 47: Are Vacant Lots Vacant?
 49: Tropical Treehouse
 50: 400-Acre Wood
 60: Publicize It!
 61: The Closer You Look
 71: Watch on Wetlands
 72: Air We Breathe
 79: Tree Lifecycle
 80: Nothing Succeeds Like Succession
 82: Resource-Go-Round
 86: Our Changing World
 87: Earth Manners
 88: Life on the Edge
 90: Native Ways
 91: In the Good Old Days
 94: By the Rivers of Babylon

3. Critical Thinking and Systems Thinking
 8: The Forest of S.T. Shrew
 15: A Few of My Favorite Things
 21: Adopt a Tree
 25: Birds and Worms
 36: Pollution Search
 50: 400-Acre Wood
 53: On the Move
 60: Publicize It!
 71: Watch on Wetlands
 75: Tipi Talk
 86: Our Changing World
 96: Improve Your Place

4. Problem Identification, Formulation, and Solution
 4: Sounds Around
 24: Nature's Recyclers
 38: Every Drop Counts
 73: Waste Watchers
 96: Improve Your Place
5. Creativity and Intellectual Curiosity
 71: Watch on Wetlands
 72: Air We Breathe
 88: Life on the Edge
 91: In the Good Old Days
 94: By the Rivers of Babylon

6. Interpersonal and Collaborative Skills
 4: Sounds Around
 13: We All Need Trees
 24: Nature's Recyclers
 35: Loving It Too Much
 41: How Plants Grow
 48: Field, Forest, and Stream
 50: 400-Acre Wood
 54: I'd Like to Visit a Place Where…
 60: Publicize It!
 63: Tree Factory
 64: Looking at Leaves
 67: How Big Is Your Tree?
 68: Name That Tree
 69: Forest for the Trees
 71: Watch on Wetlands
 77: Trees in Trouble
 83: A Peek at Packaging
 87: Earth Manners
 88: Life on the Edge
 92: A Look at Lifestyles
 94: By the Rivers of Babylon
 96: Improve Your Place

7. Self Direction
 21: Adopt a Tree
 38: Every Drop Counts
 65: Bursting Buds
 73: Waste Watchers
 80: Nothing Succeeds Like Succession

8. Accountability and Adaptability
 20: Environmental Exchange Box

9. Social Responsibility
 20: Environmental Exchange Box
 71: Watch on Wetlands
Earth Space Science

ESS1 - The Earth and Earth materials, as we know them today, have developed over long periods of time, through constant change processes.

1. Atmosphere, Climate, & Weather
 None

2. Composition & Features
 2: May The Source Be With You

3. Fossils
 None

4. Observation of the Earth from Space
 None

5. Processes & Rates of Change
 None

6. Rock Cycle
 None

7. Water
 None

ESS2 - The Earth is part of a solar system, made up of distinct parts, which have temporal and spatial interrelationships.

1. Earth, Sun and Moon
 None

2. Energy
 None

3. Solar System
 None

4. View from Earth
 None
ESS3 - The origin and evolution of galaxies and the universe demonstrate fundamental principles of physical science across vast distances and time.

1. Size and Scale
 None

2. Stars and Galaxies
 None

3. Universe
 None

ESS4 - The growth of scientific knowledge in Earth Space Science has been advanced through the development of technology and is used (alone or in combination with other sciences) to identify, understand and solve local and global issues.

1. Design Technology
 None

2. Tools
 None

3. Social Issues (Local and Global)
 5: In the Driver's Seat

4. Career Technical Education Connections
 None
Life Science

LS1 - All living organisms have identifiable structures and characteristics that allow for survival (organisms, populations, & species).

None

LS2 - Energy flows and matter recycles through an ecosystem.

None

LS3 - Groups of organisms show evidence of change over time (e.g. evolution, natural selection, structures, behaviors, and biochemistry).

None

LS4 - Humans are similar to other species in many ways, and yet are unique among Earth’s life forms.

None

LS5 - The growth of scientific knowledge in Life Science has been advanced through the development of technology and is used (alone or in combination with other sciences) to identify, understand and solve local and global issues.

None
Physical Science

PS1 - All living and nonliving things are composed of matter having characteristic properties that distinguish one substance from another (independent of size/amount of substance).
 1. Composition
 None
 2. Properties
 None

PS 2 - Energy is necessary for change to occur in matter. Energy can be stored, transferred and transformed, but cannot be destroyed.
 1. Change
 None
 2. Conservation
 3: Energy Chains
 3. Energy
 1: Energy Detectives
 2: May The Source Be With You
 3: Energy Chains

PS 3 - The motion of an object is affected by force.
 1. Forces
 None
 2. Motion
 None

PS4 - The growth of scientific knowledge in Physical Science has been advanced through the development of technology and is used (alone or in combination with other sciences) to identify, understand and solve local and global issues.
 1. Design Technology
 None
 2. Tools
 None
 3. Social Issues (Local and Global)
 1: Energy Detectives
 3: Energy Chains
 4. Career Technical Education Connections
 None
Science Process Skills

SPS1: Scientific Inquiry and Critical Thinking Skills

1. Making Observations and Asking Questions
 5: In the Driver's Seat

2. Designing Scientific Investigations
 None

3. Conducting Scientific Investigations
 None

4. Representing and Understanding Results of Investigations
 None

5. Evaluating Scientific Explanations
 None

SPS2: Unifying Concepts of Science.

1. Nature of Science
 None

2. Systems and Energy
 None

3. Models and Scale
 None

4. Patterns of Change
 None

5. Form and Function
 None

SPS3: Personal, Social, and Technological Perspectives

1. Collaboration in Scientific Endeavors
 2: May The Source Be With You
 3: Energy Chains
SPS3: Personal, Social, and Technological Perspectives (cont.)

2. Common Environmental Issues, Natural Resources Management and Conservation
 1: Energy Detectives
 2: May The Source Be With You
 3: Energy Chains
 5: In the Driver's Seat

3. Science and Technology; Technological Design and Application
 None

SPS4: Science Skills for Information, Communication and Media Literacy

1. Information and Media Literacy
 None

2. Communication Skills
 1: Energy Detectives
 2: May The Source Be With You
 6: Energy Challenge Game

3. Critical Thinking and Systems Thinking
 3: Energy Chains

4. Problem Identification, Formulation, and Solution
 None

5. Creativity and Intellectual Curiosity
 2: May The Source Be With You

6. Interpersonal and Collaborative Skills
 2: May The Source Be With You
 3: Energy Chains
 6: Energy Challenge Game

7. Self Direction
 1: Energy Detectives
 5: In the Driver's Seat

8. Accountability and Adaptability
 None

9. Social Responsibility
 None